এই আর্টিকেলে মাধ্যমিক (দশম শ্রেণী) গণিতের নবম অধ্যায়, ‘দ্বিঘাত করণী’ -এর ‘কষে দেখি – 9.3’ বিভাগের সমস্ত সমস্যার সমাধান করে দেওয়া হয়েছে। এই আর্টিকেলটি তোমাদের মাধ্যমিক পরীক্ষার প্রস্তুতিতে বিশেষভাবে সাহায্য করবে।

1. (a) \(m+\frac{1}{m}=\sqrt{3}\) হলে, (i) \(m^{2}+\frac{1}{m^{2}}\) এবং (ii) \(m^{3}+\frac{1}{m^{3}}\) -এদের সরলতম মান নির্ণয় করি।
সমাধান –
(i) \(m^{2}+\frac{1}{m^{2}}\)
\(m^{2}+\frac{1}{m^{2}}\)= \(\left(m+\frac{1}{m}\right)^{2}-2\times m\times\frac{1}{m}\)
= \(\left(\sqrt{3}\right)^{2}-2\) [যেহেতু, \(\left(m+\frac{1}{m}\right)=\sqrt{3}\)]
= \(3-2\)
= \(1\)
(ii) \(m^{3}+\frac{1}{m^{3}}\)
\(m^{3}+\frac{1}{m^{3}}\)= \(\left(m+\frac{1}{m}\right)^{3}-3\times m\times\frac{1}{m}\left(m+\frac{1}{m}\right)\)
= \(\left(\sqrt{3}\right)^{3}-3\times\left(\sqrt{3}\right)\) [যেহেতু, \(\left(m+\frac{1}{m}\right)=\sqrt{3}\)]
= \(3\sqrt{3}-3\sqrt{3}\)
= \(0\)
1. (b) দেখাই যে, \(\frac{\sqrt{5}+\sqrt{3}}{\sqrt{5}-\sqrt{3}}-\frac{\sqrt{5}-\sqrt{3}}{\sqrt{5}+\sqrt{3}}=2\sqrt{15}\)
সমাধান –
L.H.S = \(\frac{\sqrt{5}+\sqrt{3}}{\sqrt{5}-\sqrt{3}}-\frac{\sqrt{5}-\sqrt{3}}{\sqrt{5}+\sqrt{3}}\)
= \(\frac{\left(\sqrt{5}+\sqrt{3}\right)^{2}-\left(\sqrt{5}-\sqrt{3}\right)^{2}}{\left(\sqrt{5}-\sqrt{3}\right)\left(\sqrt{5}+\sqrt{3}\right)}\)
= \(\frac{4\times\sqrt{5}\times\sqrt{3}}{\left(\sqrt{5}\right)^{2}-\left(\sqrt{3}\right)^{2}}\) [∵ \(\left(a+b\right)^{2}-\left(a-b\right)^{2}=4ab\)]
= \(\frac{4\sqrt{15}}{5-3}\)
= \(\frac{4\sqrt{15}}{2}\)
= \(2\sqrt{15}\) = R.H.S
∴ L.H.S = R.H.S [প্রমাণিত]
2. সরল করি
(a) \(\frac{\sqrt{2}\left(2+\sqrt{3}\right)}{\sqrt{3}\left(\sqrt{3}+1\right)}-\frac{\sqrt{2}\left(2-\sqrt{3}\right)}{\sqrt{3}\left(\sqrt{3}-1\right)}\)
(b) \(\frac{3\sqrt{7}}{\sqrt{5}+\sqrt{2}}-\frac{5\sqrt{5}}{\sqrt{2}+\sqrt{7}}+\frac{2\sqrt{2}}{\sqrt{7}+\sqrt{5}}\)
(c) \(\frac{4\sqrt{3}}{2-\sqrt{2}}-\frac{30}{4\sqrt{3}-\sqrt{18}}-\frac{\sqrt{18}}{3-\sqrt{12}}\)
(d) \(\frac{3\sqrt{2}}{\sqrt{3}+\sqrt{6}}-\frac{4\sqrt{3}}{\sqrt{6}+\sqrt{2}}+\frac{\sqrt{6}}{\sqrt{2}+\sqrt{3}}\)
সমাধান –
(a) \(\frac{\sqrt{2}\left(2+\sqrt{3}\right)}{\sqrt{3}\left(\sqrt{3}+1\right)}-\frac{\sqrt{2}\left(2-\sqrt{3}\right)}{\sqrt{3}\left(\sqrt{3}-1\right)}\)
\(\frac{\sqrt{2}\left(2+\sqrt{3}\right)}{\sqrt{3}\left(\sqrt{3}+1\right)}-\frac{\sqrt{2}\left(2-\sqrt{3}\right)}{\sqrt{3}\left(\sqrt{3}-1\right)}\)= \(\frac{\sqrt{2}\left(2+\sqrt{3}\right)\left(\sqrt{3}-1\right)-\sqrt{2}\left(2-\sqrt{3}\right)\left(\sqrt{3}+1\right)}{\sqrt{3}\left(\sqrt{3}+1\right)\left(\sqrt{3}-1\right)}\)
= \(\frac{\sqrt{2}\left(2\sqrt{3}+3-2-\sqrt{3}\right)-\sqrt{2}\left(2\sqrt{3}-3+2-\sqrt{3}\right)}{\sqrt{3}\left\{\left(\sqrt{3}\right)^{2}-\left(1\right)^{2}\right\}}\)
= \(\frac{\sqrt{2}\left(\sqrt{3}+1\right)-\sqrt{2}\left(\sqrt{3}-1\right)}{\sqrt{3}\left(3-1\right)}\)
= \(\frac{\sqrt{6}+\sqrt{2}-\sqrt{6}+\sqrt{2}}{\sqrt{3}\times 2}\)
= \(\frac{2\sqrt{2}}{2\sqrt{3}}\)
= \(\frac{\sqrt{2}}{\sqrt{3}}\)
= \(\frac{\sqrt{2}}{\sqrt{3}}\times\frac{\sqrt{3}}{\sqrt{3}}\) [হরের করণী নিরসন করে পাই]
= \(\frac{\sqrt{6}}{3}\)
(b) \(\frac{3\sqrt{7}}{\sqrt{5}+\sqrt{2}}-\frac{5\sqrt{5}}{\sqrt{2}+\sqrt{7}}+\frac{2\sqrt{2}}{\sqrt{7}+\sqrt{5}}\)
\(\frac{3\sqrt{7}}{\sqrt{5}+\sqrt{2}}-\frac{5\sqrt{5}}{\sqrt{2}+\sqrt{7}}+\frac{2\sqrt{2}}{\sqrt{7}+\sqrt{5}}\)হরের করণী নিরসন করে পাই
= \(\frac{3\sqrt{7}}{\sqrt{5}+\sqrt{2}}\times\frac{\sqrt{5}-\sqrt{2}}{\sqrt{5}-\sqrt{2}}-\frac{5\sqrt{5}}{\sqrt{2}+\sqrt{7}}\times\frac{\sqrt{2}-\sqrt{7}}{\sqrt{2}-\sqrt{7}}+\frac{2\sqrt{2}}{\sqrt{7}+\sqrt{5}}\times\frac{\sqrt{7}-\sqrt{5}}{\sqrt{7}-\sqrt{5}}\)
= \(\frac{3\left(\sqrt{35}-\sqrt{14}\right)}{\left\{\left(\sqrt{5}\right)^{2}-\left(\sqrt{2}\right)^{2}\right\}}-\frac{5\left(\sqrt{10}-\sqrt{35}\right)}{\left\{\left(\sqrt{2}\right)^{2}-\left(\sqrt{7}\right)^{2}\right\}}+\frac{2\left(\sqrt{14}-\sqrt{10}\right)}{\left\{\left(\sqrt{7}\right)^{2}-\left(\sqrt{5}\right)^{2}\right\}}\) [যেহেতু, \(a^{2}-b^{2}=\left(a+b\right)\left(a-b\right)\)]
= \(\frac{3\left(\sqrt{35}-\sqrt{14}\right)}{5-2}-\frac{5\left(\sqrt{10}-\sqrt{35}\right)}{2-7}+\frac{2\left(\sqrt{14}-\sqrt{10}\right)}{7-5}\)
= \(\frac{3\left(\sqrt{35}-\sqrt{14}\right)}{3}-\frac{5\left(\sqrt{10}-\sqrt{35}\right)}{-5}+\frac{2\left(\sqrt{14}-\sqrt{10}\right)}{2}\)
= \(\left(\sqrt{35}-\sqrt{14}\right)+\left(\sqrt{10}-\sqrt{35}\right)+\left(\sqrt{14}-\sqrt{10}\right)\)
= \(0\)
(c) \(\frac{4\sqrt{3}}{2-\sqrt{2}}-\frac{30}{4\sqrt{3}-\sqrt{18}}-\frac{\sqrt{18}}{3-\sqrt{12}}\)
\(\frac{4\sqrt{3}}{2-\sqrt{2}}-\frac{30}{4\sqrt{3}-\sqrt{18}}-\frac{\sqrt{18}}{3-\sqrt{12}}\)= \(\frac{4\sqrt{3}}{2-\sqrt{2}}-\frac{30}{4\sqrt{3}-\sqrt{3\times 3\times 2}}-\frac{\sqrt{3\times 3\times 2}}{3-\sqrt{2\times 2\times 3}}\)
= \(\frac{4\sqrt{3}}{2-\sqrt{2}}-\frac{30}{4\sqrt{3}-3\sqrt{2}}-\frac{3\sqrt{2}}{3-2\sqrt{3}}\)
হরের করণী নিরসন করে পাই
= \(\frac{4\sqrt{3}}{2-\sqrt{2}}\times\frac{2+\sqrt{2}}{2+\sqrt{2}}-\frac{30}{4\sqrt{3}-3\sqrt{2}}\times\frac{4\sqrt{3}+3\sqrt{2}}{4\sqrt{3}+3\sqrt{2}}-\frac{3\sqrt{2}}{3-2\sqrt{3}}\times\frac{3+2\sqrt{3}}{3+2\sqrt{3}}\)
= \(\frac{4\left(2\sqrt{3}+\sqrt{6}\right)}{\left\{\left(2\right)^{2}-\left(\sqrt{2}\right)^{2}\right\}}-\frac{30\left(4\sqrt{3}+3\sqrt{2}\right)}{\left\{\left(4\sqrt{3}\right)^{2}-\left(3\sqrt{2}\right)^{2}\right\}}-\frac{3\left(3\sqrt{2}+2\sqrt{6}\right)}{\left\{\left(3\right)^{2}-\left(2\sqrt{3}\right)^{2}\right\}}\) [যেহেতু, \(a^{2}-b^{2}=\left(a+b\right)\left(a-b\right)\)]
= \(\frac{4\left(2\sqrt{3}+\sqrt{6}\right)}{4-2}-\frac{30\left(4\sqrt{3}+3\sqrt{2}\right)}{48-18}-\frac{3\left(3\sqrt{2}+2\sqrt{6}\right)}{9-12}\)
= \(\frac{4\left(2\sqrt{3}+\sqrt{6}\right)}{2}-\frac{30\left(4\sqrt{3}+3\sqrt{2}\right)}{30}-\frac{3\left(3\sqrt{2}+2\sqrt{6}\right)}{-3}\)
= \(2\left(2\sqrt{3}+\sqrt{6}\right)-\left(4\sqrt{3}+3\sqrt{2}\right)+\left(3\sqrt{2}+2\sqrt{6}\right)\)
= \(4\sqrt{6}\)
(d) \(\frac{3\sqrt{2}}{\sqrt{3}+\sqrt{6}}-\frac{4\sqrt{3}}{\sqrt{6}+\sqrt{2}}+\frac{\sqrt{6}}{\sqrt{2}+\sqrt{3}}\)
\(\frac{3\sqrt{2}}{\sqrt{3}+\sqrt{6}}-\frac{4\sqrt{3}}{\sqrt{6}+\sqrt{2}}+\frac{\sqrt{6}}{\sqrt{2}+\sqrt{3}}\)হরের করণী নিরসন করে পাই
= \(\frac{3\sqrt{2}}{\sqrt{3}+\sqrt{6}}\times\frac{\sqrt{3}-\sqrt{6}}{\sqrt{3}-\sqrt{6}}-\frac{4\sqrt{3}}{\sqrt{6}+\sqrt{2}}\times\frac{\sqrt{6}-\sqrt{2}}{\sqrt{6}-\sqrt{2}}+\frac{\sqrt{6}}{\sqrt{2}+\sqrt{3}}\times\frac{\sqrt{2}-\sqrt{3}}{\sqrt{2}-\sqrt{3}}\)
= \(\frac{3\left(\sqrt{6}-\sqrt{12}\right)}{\left\{\left(\sqrt{3}\right)^{2}-\left(\sqrt{6}\right)^{2}\right\}}-\frac{4\left(\sqrt{18}-\sqrt{6}\right)}{\left\{\left(\sqrt{6}\right)^{2}-\left(\sqrt{2}\right)^{2}\right\}}+\frac{\left(\sqrt{12}-\sqrt{18}\right)}{\left\{\left(\sqrt{2}\right)^{2}-\left(\sqrt{3}\right)^{2}\right\}}\)
= \(\frac{3\left(\sqrt{6}-\sqrt{12}\right)}{3-6}-\frac{4\left(\sqrt{18}-\sqrt{6}\right)}{6-2}+\frac{\left(\sqrt{12}-\sqrt{18}\right)}{2-3}\)
= \(\frac{3\left(\sqrt{6}-\sqrt{12}\right)}{-3}-\frac{4\left(\sqrt{18}-\sqrt{6}\right)}{4}+\frac{\left(\sqrt{12}-\sqrt{18}\right)}{-1}\)
= \(-\left(\sqrt{6}-\sqrt{12}\right)-\left(\sqrt{18}-\sqrt{6}\right)-\left(\sqrt{12}-\sqrt{18}\right)\)
= \(0\)
3. যদি x = 2, y = 3 এবং z = 6 হয় তবে, \(\frac{3\sqrt{x}}{\sqrt{y}+\sqrt{z}}-\frac{4\sqrt{y}}{\sqrt{z}+\sqrt{x}}+\frac{\sqrt{z}}{\sqrt{x}+\sqrt{y}}\) -এর মান হিসাব করে লিখি।
সমাধান –
\(\frac{3\sqrt{x}}{\sqrt{y}+\sqrt{z}}-\frac{4\sqrt{y}}{\sqrt{z}+\sqrt{x}}+\frac{\sqrt{z}}{\sqrt{x}+\sqrt{y}}\)x, y এবং z এর মান বসিয়ে পাই,
\(\frac{3\sqrt{2}}{\sqrt{3}+\sqrt{6}}-\frac{4\sqrt{3}}{\sqrt{6}+\sqrt{2}}+\frac{\sqrt{6}}{\sqrt{2}+\sqrt{3}}\)হরের করণী নিরসন করে পাই
= \(\frac{3\sqrt{2}}{\sqrt{3}+\sqrt{6}}\times\frac{\sqrt{3}-\sqrt{6}}{\sqrt{3}-\sqrt{6}}-\frac{4\sqrt{3}}{\sqrt{6}+\sqrt{2}}\times\frac{\sqrt{6}-\sqrt{2}}{\sqrt{6}-\sqrt{2}}+\frac{\sqrt{6}}{\sqrt{2}+\sqrt{3}}\times\frac{\sqrt{2}-\sqrt{3}}{\sqrt{2}-\sqrt{3}}\)
= \(\frac{3\left(\sqrt{6}-\sqrt{12}\right)}{\left\{\left(\sqrt{3}\right)^{2}-\left(\sqrt{6}\right)^{2}\right\}}-\frac{4\left(\sqrt{18}-\sqrt{6}\right)}{\left\{\left(\sqrt{6}\right)^{2}-\left(\sqrt{2}\right)^{2}\right\}}+\frac{\left(\sqrt{12}-\sqrt{18}\right)}{\left\{\left(\sqrt{2}\right)^{2}-\left(\sqrt{3}\right)^{2}\right\}}\) [যেহেতু, \(a^{2}-b^{2}=\left(a+b\right)\left(a-b\right)\)]
= \(\frac{3\left(\sqrt{6}-\sqrt{12}\right)}{3-6}-\frac{4\left(\sqrt{18}-\sqrt{6}\right)}{6-2}+\frac{\left(\sqrt{12}-\sqrt{18}\right)}{2-3}\)
= \(\frac{3\left(\sqrt{6}-\sqrt{12}\right)}{-3}-\frac{4\left(\sqrt{18}-\sqrt{6}\right)}{4}+\frac{\left(\sqrt{12}-\sqrt{18}\right)}{-1}\)
= \(-\left(\sqrt{6}-\sqrt{12}\right)-\left(\sqrt{18}-\sqrt{6}\right)-\left(\sqrt{12}-\sqrt{18}\right)\)
= \(0\)
4.[ latex]x=\sqrt{7}+\sqrt{6}[/latex] হলে, (i) \(x-\frac{1}{x}\) (ii) \(x+\frac{1}{x}\) (iii) \(x^{2}+\frac{1}{x^{2}}\) এবং (iv) \(x^{3}+\frac{1}{x^{3}}\) -এর সরলতম মানগুলি নির্ণয় করি।
সমাধান –
\(x=\sqrt{7}+\sqrt{6}\)∴ \(\frac{1}{x}=\frac{1}{\sqrt{7}+\sqrt{6}}\)
= \(\frac{1}{\sqrt{7}+\sqrt{6}}\times\frac{\sqrt{7}-\sqrt{6}}{\sqrt{7}-\sqrt{6}}\) [হরের করণী নিরসন করে পাই]
= \(\frac{\sqrt{7}-\sqrt{6}}{\left(\sqrt{7}\right)^{2}-\left(\sqrt{6}\right)^{2}}\) [যেহেতু, \(a^{2}-b^{2}=\left(a+b\right)\left(a-b\right)\)]
= \(\frac{\sqrt{7}-\sqrt{6}}{7-6}\)
= \(\frac{\sqrt{7}-\sqrt{6}}{1}\)
= \(\sqrt{7}-\sqrt{6}\)
(i) \(x-\frac{1}{x}\)
= \(\left(\sqrt{7}+\sqrt{6}\right)-\left(\sqrt{7}-\sqrt{6}\right)\)
= \(2\sqrt{6}\)
(ii) \(x+\frac{1}{x}\)
= \(\left(\sqrt{7}+\sqrt{6}\right)+\left(\sqrt{7}-\sqrt{6}\right)\)
= \(2\sqrt{7}\)
(iii) \(x^{2}+\frac{1}{x^{2}}\)
= \(\left(x-\frac{1}{x}\right)^{2}+2\times x\times\frac{1}{x}\)
= \(\left(2\sqrt{6}\right)^{2}+2\times 1\)
= \(24+2\)
= \(26\)
(iv) \(x^{3}+\frac{1}{x^{3}}\)
= \(\left(x+\frac{1}{x}\right)^{3}-3\times x\times\frac{1}{x}\left(x+\frac{1}{x}\right)\)
= \(\left(2\sqrt{7}\right)^{3}-3\times 1\times\left(2\sqrt{7}\right)\)
= \(56\sqrt{7}-6\sqrt{7}\)
= \(50\sqrt{7}\)
5. সরল করি – \(\frac{x+\sqrt{x^{2}-1}}{x-\sqrt{x^{2}-1}}+\frac{x-\sqrt{x^{2}-1}}{x+\sqrt{x^{2}-1}}\) সরলফল 14 হলে, x -এর মান কী কী হবে হিসাব করে লিখি।
সমাধান –
\(\frac{x+\sqrt{x^{2}-1}}{x-\sqrt{x^{2}-1}}+\frac{x-\sqrt{x^{2}-1}}{x+\sqrt{x^{2}-1}}\)= \(\frac{\left(x+\sqrt{x^{2}-1}\right)^{2}+\left(x-\sqrt{x^{2}-1}\right)^{2}}{\left(x-\sqrt{x^{2}-1}\right)\left(x+\sqrt{x^{2}-1}\right)}\)
= \(\frac{2\left\{x^{2}+\left(\sqrt{x^{2}-1}\right)^{2}\right\}}{\left(x\right)^{2}-\left(\sqrt{x^{2}-1}\right)^{2}}\)
[∵ \(\left(a+b\right)^{2}+\left(a-b\right)^{2}=2\left(a^{2}+b^{2}\right)\)]
= \(\frac{2\left(x^{2}+x^{2}-1\right)}{x^{2}-\left(x^{2}-1\right)}\)
= \(\frac{2\left(2x^{2}-1\right)}{x^{2}-x^{2}+1}\)
= \(4x^{2}-2\)
যেহেতু প্রদত্ত রাশির মান 14
∴ \(4x^{2}-2=14\)
বা, \(4x^{2}=14+2\)
বা, \(4x^{2}=16\)
বা, \(x^{2}=\frac{16}{4}\)
বা, \(x^{2}=4\)
বা, \(x=\pm\sqrt{4}\)
বা, \(x=\pm 2\)
∴ x -এর মান ±2
6. যদি \(a=\frac{\sqrt{5}+1}{\sqrt{5}-1}\) ও \(b=\frac{\sqrt{5}-1}{\sqrt{5}+1}\) হয়, তবে নীচের মানগুলি নির্ণয় করি।
(i) \(\frac{a^{2}+ab+b^{2}}{a^{2}-ab+b^{2}}\)
(ii) \(\frac{\left(a-b\right)^{3}}{\left(a+b\right)^{3}}\)
(iii) \(\frac{3a^{2}+5ab+3b^{2}}{3a^{2}-5ab+b^{2}}\)
(iv) \(\frac{a^{3}+b^{3}}{a^{3}-b^{3}}\)
সমাধান –
\(a=\frac{\sqrt{5}+1}{\sqrt{5}-1}\) ও \(b=\frac{\sqrt{5}-1}{\sqrt{5}+1}\)
∴ \(a+b=\frac{\sqrt{5}+1}{\sqrt{5}-1}+\frac{\sqrt{5}-1}{\sqrt{5}+1}\)
= \(\frac{\left(\sqrt{5}+1\right)^{2}+\left(\sqrt{5}-1\right)^{2}}{\left(\sqrt{5}-1\right)\left(\sqrt{5}+1\right)}\)
= \(\frac{2\left\{\left(\sqrt{5}\right)^{2}+\left(1\right)^{2}\right\}}{\left(\sqrt{5}\right)^{2}-\left(1\right)^{2}}\)
[∵ \(\left(a+b\right)^{2}+\left(a-b\right)^{2}=2\left(a^{2}+b^{2}\right)\)]
= \(\frac{2\left(5+1\right)}{5-1}\)
= \(\frac{2\times 6}{4}\)
= \(\frac{12}{4}\)
= \(4\)
\(a=\frac{\sqrt{5}+1}{\sqrt{5}-1}\) ও \(b=\frac{\sqrt{5}-1}{\sqrt{5}+1}\)
∴ \(a-b=\frac{\sqrt{5}+1}{\sqrt{5}-1}-\frac{\sqrt{5}-1}{\sqrt{5}+1}\)
= \(\frac{\left(\sqrt{5}+1\right)^{2}-\left(\sqrt{5}-1\right)^{2}}{\left(\sqrt{5}-1\right)\left(\sqrt{5}+1\right)}\)
= \(\frac{4\times\sqrt{5}\times 1}{\left(\sqrt{5}\right)^{2}-\left(1\right)^{2}}\) [∵ \(\left(a+b\right)^{2}-\left(a-b\right)^{2}=4ab\)]
= \(\frac{4\sqrt{5}}{5-1}\)
= \(\frac{4\sqrt{5}}{4}\)
= \(\sqrt{5}\)
\(a=\frac{\sqrt{5}+1}{\sqrt{5}-1}\) ও \(b=\frac{\sqrt{5}-1}{\sqrt{5}+1}\)
∴ \(a\times b=\frac{\sqrt{5}+1}{\sqrt{5}-1}\times\frac{\sqrt{5}-1}{\sqrt{5}+1}\)
= \(1\)
(i) \(\frac{a^{2}+ab+b^{2}}{a^{2}-ab+b^{2}}\)
\(\frac{a^{2}+ab+b^{2}}{a^{2}-ab+b^{2}}\)= \(\frac{a^{2}+2ab+b^{2}-ab}{a^{2}-2ab+b^{2}+ab}\)
= \(\frac{\left(a+b\right)^{2}-ab}{\left(a-b\right)^{2}+ab}\)
= \(\frac{\left(4\right)^{2}-1}{\left(\sqrt{5}\right)^{2}+1}\) [∵ a + b = 4, a – b = \(\sqrt{5}\) এবং ab = 1]
= \(\frac{16-1}{5+1}\)
= \(\frac{15}{6}\)
= \(\frac{5}{2}\)
= \(2.5\)
(ii) \(\frac{\left(a-b\right)^{3}}{\left(a+b\right)^{3}}\)
\(\frac{\left(a-b\right)^{3}}{\left(a+b\right)^{3}}\)= \(\frac{\left(\sqrt{5}\right)^{3}}{\left(4\right)^{3}}\) [∵ a + b = 4, a – b = \(\sqrt{5}\)]
= \(\frac{5\sqrt{5}}{64}\)
(iii) \(\frac{3a^{2}+5ab+3b^{2}}{3a^{2}-5ab+b^{2}}\)
\(\frac{3a^{2}+5ab+3b^{2}}{3a^{2}-5ab+b^{2}}\)= \(\frac{3a^{2}+6ab+3b^{2}-ab}{3a^{2}-6ab+3b^{2}+ab}\)
= \(\frac{3\left(a^{2}+2ab+b^{2}\right)-ab}{3\left(a^{2}-2ab+b^{2}\right)+ab}\)
= \(\frac{3\left(a+b\right)^{2}-ab}{3\left(a-b\right)^{2}+ab}\)
= \(\frac{3\left(4\right)^{2}-1}{3\left(\sqrt{5}\right)^{2}+1}\)
[∵ a + b = 4, a – b = \(\sqrt{5}\) এবং ab = 1]
= \(\frac{48-1}{15+1}\)
= \(\frac{47}{16}\)
= \(2.9375\)
(iv) \(\frac{a^{3}+b^{3}}{a^{3}-b^{3}}\)
\(\frac{a^{3}+b^{3}}{a^{3}-b^{3}}\)= \(\frac{\left(a+b\right)^{3}-3ab\left(a+b\right)}{\left(a-b\right)^{3}+3ab\left(a-b\right)}\)
= \(\frac{\left(4\right)^{3}-3\times 1\times\left(4\right)}{\left(\sqrt{5}\right)^{3}+3\left(1\right)\left(\sqrt{5}\right)}\)
= \(\frac{64-12}{5\sqrt{5}+3\sqrt{5}}\)
= \(\frac{52}{8\sqrt{5}}\)
= \(\frac{13}{2\sqrt{5}}\)
= \(\frac{13\times\sqrt{5}}{2\sqrt{5}\times\sqrt{5}}\) [হরের করণী নিরসন করে পাই]
= \(\frac{13\sqrt{5}}{10}\)
7.যদি \(x=2+\sqrt{3}\), \(y=2-\sqrt{3}\) হয়, তবে নিম্নলিখিতগুলির সরলতম মান নির্ণয় করি।
(a) (i)\(x-\frac{1}{x}\) (ii) \(y^{2}+\frac{1}{y^{2}}\) (iii) \(x^{3}-\frac{1}{x^{3}}\) (iv) \(xy+\frac{1}{xy}\)
(b) \(3x^{2}-5xy+3y^{2}\)
সমাধান –
\(x=2+\sqrt{3}\)∴ \(\frac{1}{x}=\frac{1}{2+\sqrt{3}}\)
বা, \(\frac{1}{x}=\frac{1}{2+\sqrt{3}}\times\frac{2-\sqrt{3}}{2-\sqrt{3}}\) [হরের করণী নিরসন করে পাই]
বা, \(\frac{1}{x}=\frac{2-\sqrt{3}}{\left(2\right)^{2}-\left(\sqrt{3}\right)^{2}}\)
বা, \(\frac{1}{x}=\frac{2-\sqrt{3}}{4-3}\)
বা, \(\frac{1}{x}=2-\sqrt{3}\)
আবার, \(y=2-\sqrt{3}\)
বা, \(\frac{1}{y}=\frac{1}{2-\sqrt{3}}\)
বা, \(\frac{1}{y}=\frac{1}{2-\sqrt{3}}\times\frac{2+\sqrt{3}}{2+\sqrt{3}}\) [হরের করণী নিরসন করে পাই]
বা, \(\frac{1}{y}=\frac{2+\sqrt{3}}{\left(2\right)^{2}-\left(\sqrt{3}\right)^{2}}\)
বা, \(\frac{1}{y}=\frac{2+\sqrt{3}}{4-3}\)
বা, \(\frac{1}{y}=2+\sqrt{3}\)
(a) (i) \(x-\frac{1}{x}\)
\(x-\frac{1}{x}\)= \(\left(2+\sqrt{3}\right)-\left(2-\sqrt{3}\right)\)
= \(2\sqrt{3}\)
(a) (ii) \(y^{2}+\frac{1}{y^{2}}\)
\(y^{2}+\frac{1}{y^{2}}\)= \(\left(y+\frac{1}{y}\right)^{2}-2\times y\times\frac{1}{y}\)
= \(\left(2-\sqrt{3}+2+\sqrt{3}\right)^{2}-2\) [∴ y এবং \(\frac{1}{y}\) এর মান বসিয়ে পাই]
= \(\left(4\right)^{2}-2\)
= \(16-2\)
= \(14\)
(a) (iii) \(x^{3}-\frac{1}{x^{3}}\)
\(x^{3}-\frac{1}{x^{3}}\)\(\left(x – \frac{1}{x}\right)^{3}+ 3 \cdot \left(x \cdot \frac{1}{x}\right)\left(x – \frac{1}{x}\right)\)
= \(\left(2\sqrt{3}\right)^{3}+3\left(2\sqrt{3}\right)\) [\(\left(x-\frac{1}{x}\right)\) এর মান বসিয়ে পাই]
= \(24\sqrt{3}+6\sqrt{3}\)
= \(30\sqrt{3}\)
(a) (iv) \(xy+\frac{1}{xy}\)
\(xy+\frac{1}{xy}\)\(x=2+\sqrt{3}\) এবং \(y=2-\sqrt{3}\)
∴ x × y
= \(\left(2+\sqrt{3}\right)\left(2-\sqrt{3}\right)\)
= \(\left(2\right)^{2}-\left(\sqrt{3}\right)^{2}\)
= \(4-3\)
= \(1\)
∴ \(xy+\frac{1}{xy}\)
= \(1+\frac{1}{1}\)
= \(2\)
(b) \(3x^{2}-5xy+3y^{2}\)
\(x=2+\sqrt{3}\) এবং \(y=2-\sqrt{3}\)
∴ x × y
= \(\left(2+\sqrt{3}\right)\left(2-\sqrt{3}\right)\)
= \(\left(2\right)^{2}-\left(\sqrt{3}\right)^{2}\)
= \(4-3\)
= \(1\)
এবং (x – y)
= \(\left\{\left(2+\sqrt{3}\right)-\left(2-\sqrt{3}\right)\right\}\)
= \(2\sqrt{3}\)
∴ \(3x^{2}-5xy+3y^{2}\)
= \(3x^{2}-6xy+3y^{2}+xy\)
= \(3\left(x^{2}-2xy+y^{2}\right)+xy\)
= \(3\left(x-y\right)^{2}+xy\)
= \(3\left(2\sqrt{3}\right)^{2}+1\) [(x – y) এবং xy এর মান বসিয়ে পাই]
= \(3\times 12+1\)
= \(36+1\)
= \(37\)
8.\(x=\frac{\sqrt{7}+\sqrt{3}}{\sqrt{7}-\sqrt{3}}\) এবং xy = 1 হলে, দেখাই যে, \(\frac{x^{2}+xy+y^{2}}{x^{2}-xy+y^{2}}=\frac{12}{11}\)
সমাধান –
\(x=\frac{\sqrt{7}+\sqrt{3}}{\sqrt{7}-\sqrt{3}}\)এবং xy = 1
∴ \(y=\frac{1}{x}\)
বা, \(y=\frac{1}{\frac{\sqrt{7}+\sqrt{3}}{\sqrt{7}-\sqrt{3}}}\)
বা, \(y=\frac{\sqrt{7}-\sqrt{3}}{\sqrt{7}+\sqrt{3}}\)
∴ x + y
= \(\frac{\sqrt{7}+\sqrt{3}}{\sqrt{7}-\sqrt{3}}+\frac{\sqrt{7}-\sqrt{3}}{\sqrt{7}+\sqrt{3}}\)
= \(\frac{\left(\sqrt{7}+\sqrt{3}\right)^{2}+\left(\sqrt{7}-\sqrt{3}\right)^{2}}{\left(\sqrt{7}-\sqrt{3}\right)\left(\sqrt{7}+\sqrt{3}\right)}\)
= \(\frac{2\left\{\left(\sqrt{7}\right)^{2}+\left(\sqrt{3}\right)^{2}\right\}}{\left(\sqrt{7}\right)^{2}-\left(\sqrt{3}\right)^{2}}\) [∵ \(\left(a+b\right)^{2}+\left(a-b\right)^{2}=2\left(a^{2}+b^{2}\right)\)]
= \(\frac{2\left(7+3\right)}{7-3}\)
= \(\frac{2\times 10}{4}\)
= \(\frac{20}{4}\)
= \(5\)
∴ \(\frac{x^{2}+xy+y^{2}}{x^{2}-xy+y^{2}}\)
= \(\frac{x^{2}+2xy+y^{2}-xy}{x^{2}+2xy+y^{2}-3xy}\)
= \(\frac{\left(x+y\right)^{2}-xy}{\left(x+y\right)^{2}-3xy}\)
= \(\frac{\left(5\right)^{2}-1}{\left(5\right)^{2}-3\times 1}\)
= \(\frac{25-1}{25-3}\)
= \(\frac{24}{22}\)
= \(\frac{12}{11}\) [প্রমাণিত]
9. \(\left(\sqrt{7}+1\right)\) এবং \(\left(\sqrt{5}+\sqrt{3}\right)\) -এর মধ্যে কোনটি বড়ো লিখি।
সমাধান –
\(\left(\sqrt{7}+1\right)^{2}\)= \(\left(\sqrt{7}\right)^{2}+2\times\sqrt{7}\times 1+\left(1\right)^{2}\)
= \(7+2\sqrt{7}+1\)
= \(8+2\sqrt{7}\)
আবার
\(\left(\sqrt{5}+\sqrt{3}\right)^{2}\)= \(\left(\sqrt{5}\right)^{2}+2\times\sqrt{5}\times\sqrt{3}+\left(\sqrt{3}\right)^{2}\)
= \(5+2\sqrt{15}+3\)
= \(8+2\sqrt{15}\)
এখন, \(8+2\sqrt{15}>8+2\sqrt{7}\) [∵ \(\sqrt{15}>\sqrt{7}\Rightarrow 2\sqrt{15}>2\sqrt{7}\)]
∴ \(\left(\sqrt{5}+\sqrt{3}\right)^{2}>\left(\sqrt{7}+1\right)^{2}\)
∴ \(\left(\sqrt{5}+\sqrt{3}\right)>\left(\sqrt{7}+1\right)\)
10. অতিসংক্ষিপ্ত উত্তরধর্মী প্রশ্ন (V.S.A.)
(A) বহুবিকল্পীয় প্রশ্ন (M.C.Q) –
(i) \(x=2+\sqrt{3}\) হলে, \(x+\frac{1}{x}\) -এর মান
(a) 2
(b) \(2\sqrt{3}\)
(c) 4
(d) \(2-\sqrt{3}\)
উত্তর – (c) 4
সমাধান,
\(x=2+\sqrt{3}\)∴ \(\frac{1}{x}=\frac{1}{2+\sqrt{3}}\)
বা, \(\frac{1}{x}=\frac{1}{2+\sqrt{3}}\times\frac{2-\sqrt{3}}{2-\sqrt{3}}\)
বা, \(\frac{1}{x}=\frac{2-\sqrt{3}}{\left(2\right)^{2}-\left(\sqrt{3}\right)^{2}}\)
বা, \(\frac{1}{x}=\frac{2-\sqrt{3}}{4-3}\)
বা, \(\frac{1}{x}=2-\sqrt{3}\)
∴ \(x+\frac{1}{x}\)
= \(\left(2+\sqrt{3}\right)+\left(2-\sqrt{3}\right)\)
= \(4\)
∴ \(x+\frac{1}{x}=4\)
(ii) যদি \(p+q=\sqrt{13}\) এবং \(p-q=\sqrt{5}\) হয়, তাহলে pq -এর মান
(a) 2
(b) 18
(c) 9
(d) 8
উত্তর – (a) 2
সমাধান,
\(pq=\left(\frac{p+q}{2}\right)^{2}-\left(\frac{p-q}{2}\right)^{2}\) [∵ \(ab=\left(\frac{a+b}{2}\right)^{2}-\left(\frac{a-b}{2}\right)^{2}\)]
= \(\left(\frac{\sqrt{13}}{2}\right)^{2}-\left(\frac{\sqrt{5}}{2}\right)^{2}\) [∵ \(p+q=\sqrt{13}\) এবং \(p-q=\sqrt{5}\)]
= \(\frac{13}{4}-\frac{5}{4}\)
= \(\frac{13-5}{4}\)
= \(\frac{8}{4}\)
= \(2\)
(iii) যদি \(a+b=\sqrt{5}\) এবং \(a-b=\sqrt{3}\) হয়, তাহলে \(\left(a^{2}+b^{2}\right)\) -এর মান
(a) 8
(b) 4
(c) 2
(d) 1
উত্তর – (b) 4
সমাধান,
\(ab=\left(\frac{a+b}{2}\right)^{2}-\left(\frac{a-b}{2}\right)^{2}\)= \(\left(\frac{\sqrt{5}}{2}\right)^{2}-\left(\frac{\sqrt{3}}{2}\right)^{2}\)
= \(\frac{5}{4}-\frac{3}{4}\)
= \(\frac{5-3}{4}\)
= \(\frac{2}{4}\)
= \(\frac{1}{2}\)
∴ (a2 + b2)
= (a + b)2 – 2ab
= \(\left(\sqrt{5}\right)^{2}-2\times\frac{1}{2}\)
= \(5-1\)
= \(4\)
(iv) \(\sqrt{125}\) থেকে \(\sqrt{5}\) বিয়োগ করলে বিয়োগফল হবে
(a) \(\sqrt{80}\)
(b) \(\sqrt{120}\)
(c) \(\sqrt{100}\)
(d) কোনটিই নয়
উত্তর – (a) \(\sqrt{80}\)
সমাধান,
\(\sqrt{125}-\sqrt{5}\)= \(\sqrt{5\times 5\times 5}-\sqrt{5}\)
= \(5\sqrt{5}-\sqrt{5}\)
= \(4\sqrt{5}\)
= \(\sqrt{5\times 4\times 4}\)
= \(\sqrt{80}\)
(v) \(\left(5-\sqrt{3}\right)\left(\sqrt{3}-1\right)\left(5+\sqrt{3}\right)\left(\sqrt{3}+1\right)\) -এর গুণফল
(a) 22
(b) 44
(c) 2
(d) 11
উত্তর – (b) 44
সমাধান,
\(\left(5-\sqrt{3}\right)\left(\sqrt{3}-1\right)\left(5+\sqrt{3}\right)\left(\sqrt{3}+1\right)\)= \(\left(5-\sqrt{3}\right)\left(5+\sqrt{3}\right)\left(\sqrt{3}-1\right)\left(\sqrt{3}+1\right)\)
= \(\left\{\left(5\right)^{2}-\left(\sqrt{3}\right)^{2}\right\}\left\{\left(\sqrt{3}\right)^{2}-\left(1\right)^{2}\right\}\)
= \(\left(25-3\right)\left(3-1\right)\)
= \(22\times 2\)
= \(44\)
(B) নীচের বিবৃতিগুলি সত্য না মিথ্যা লিখি –
(i) \(\sqrt{75}\) এবং \(\sqrt{147}\) সদৃশ করণী।
উত্তর – সত্য।
সমাধান,
\(\sqrt{75}=\sqrt{5\times 5\times 3}=5\sqrt{3}\)\(\sqrt{147}=\sqrt{7\times 7\times 3}=7\sqrt{3}\)অর্থাৎ প্রদত্ত করণীদুটি সদৃশ।
(ii) \(\sqrt{\pi}\) একটি দ্বিঘাত করণী।
উত্তর – মিথ্যা।
সমাধান,
\(\sqrt{\pi}\) একটি দ্বিঘাত করণী নয়
অর্থাৎ বিবৃতি মিথ্যা।
(C) শূন্যস্থান পূরণ করি –
(i) \(5\sqrt{11}\) একটি ___ সংখ্যা। (মূলদ/অমূলদ)
উত্তর – অমূলদ।
(ii) \(\left(\sqrt{3}-5\right)\) -এর অনুবন্ধী করণী ___।
উত্তর – \(\left(-\sqrt{3}-5\right)\)
(iii) দুটি দ্বিঘাত করণীর যোগফল ও গুণফল একটি মূলদ সংখ্যা হলে করণীদ্বয় ___ করণী।
উত্তর – অনুবন্ধী।
11. সংক্ষিপ্তধর্মী উত্তরপ্রশ্ন (S.A.)
(i) \(x=3+2\sqrt{2}\) হলে, \(x+\frac{1}{x}\) -এর মান লিখি।
সমাধান –
\(x=3+2\sqrt{2}\)বা, \(\frac{1}{x}=\frac{1}{3+2\sqrt{2}}\times\frac{3-2\sqrt{2}}{3-2\sqrt{2}}\)
বা, \(\frac{1}{x}=\frac{3-2\sqrt{2}}{\left(3\right)^{2}-\left(2\sqrt{2}\right)^{2}}\)
বা, \(\frac{1}{x}=\frac{3-2\sqrt{2}}{9-8}\)
বা, \(\frac{1}{x}=3-2\sqrt{2}\)
∴ \(x+\frac{1}{x}\)
= \(\left(3+2\sqrt{2}\right)+\left(3-2\sqrt{2}\right)\)
= \(6\)
∴ \(x+\frac{1}{x}=6\)
(ii) \(\left(\sqrt{15}+\sqrt{3}\right)\) এবং \(\left(\sqrt{10}+\sqrt{8}\right)\) -এর মধ্যে কোনটি বড়ো লিখি।
সমাধান –
\(\left(\sqrt{15}+\sqrt{3}\right)^{2}\)= \(\left(\sqrt{15}\right)^{2}+2\times\sqrt{15}\times\sqrt{3}+\left(\sqrt{3}\right)^{2}\)
= \(15+2\sqrt{45}+3\)
= \(18+2\sqrt{45}\)
এবং \(\left(\sqrt{10}+\sqrt{8}\right)^{2}\)
= \(\left(\sqrt{10}\right)^{2}+2\times\sqrt{10}\times\sqrt{8}+\left(\sqrt{8}\right)^{2}\)
= \(10+2\sqrt{80}+8\)
= \(18+2\sqrt{80}\)
এখন, \(18+2\sqrt{80}>18+2\sqrt{45}\) [যেহেতু, \(\sqrt{80}>\sqrt{45}\)]
∴ \(\left(\sqrt{10}+\sqrt{8}\right)^{2}>\left(\sqrt{15}+\sqrt{3}\right)^{2}\)
∴ \(\left(\sqrt{10}+\sqrt{8}\right)>\left(\sqrt{15}+\sqrt{3}\right)\)
∴ \(\left(\sqrt{10}+\sqrt{8}\right)\) এই দ্বিঘাত করণীটি বড়ো।
(iii) দুটি মিশ্র দ্বিঘাত করণী লিখি যাদের গুণফল একটি মূলদ সংখ্যা।
\(\left(\sqrt{3}+2\right)\) এবং \(\left(\sqrt{3}-2\right)\) হল দুটি মিশ্র দ্বিঘাত করণী যাদের গুনফল একটি মূলদ সংখ্যা।
(iv) \(\sqrt{72}\) থেকে কত বিয়োগ করলে \(\sqrt{32}\) হবে তা লিখি।
সমাধান –
ধরি \(\sqrt{72}\) থেকে x বিয়োগ করলে \(\sqrt{32}\) হবে।
∴ \(\sqrt{72}-x=\sqrt{32}\)
বা, \(x=\sqrt{72}-\sqrt{32}\)
বা, \(x=\sqrt{2\times 2\times 2\times 3\times 3}-\sqrt{2\times 2\times 2\times 2\times 2}\)
বা, \(x=2\times 3\sqrt{2}-2\times 2\sqrt{2}\)
বা, \(x=6\sqrt{2}-4\sqrt{2}\)
বা, \(x=2\sqrt{2}\)
∴ \(\sqrt{72}\) থেকে \(2\sqrt{2}\) বিয়োগ করলে \(\sqrt{32}\) হবে।
(v) \(\left(\frac{1}{\sqrt{2}+1}+\frac{1}{\sqrt{3}+\sqrt{2}}+\frac{1}{\sqrt{4}+\sqrt{3}}\right)\) -এর সরলতম মান লিখি।
সমাধান –
\(\frac{1}{\sqrt{2}+1}+\frac{1}{\sqrt{3}+\sqrt{2}}+\frac{1}{\sqrt{4}+\sqrt{3}}\)হরের করণী নিরসন করে পাই
= \(\frac{1}{\sqrt{2}+1}\times\frac{\sqrt{2}-1}{\sqrt{2}-1}+\frac{1}{\sqrt{3}+\sqrt{2}}\times\frac{\sqrt{3}-\sqrt{2}}{\sqrt{3}-\sqrt{2}}+\frac{1}{\sqrt{4}+\sqrt{3}}\times\frac{\sqrt{4}-\sqrt{3}}{\sqrt{4}-\sqrt{3}}\)
= \(\frac{\sqrt{2}-1}{\left(\sqrt{2}\right)^{2}-\left(1\right)^{2}}+\frac{\sqrt{3}-\sqrt{2}}{\left(\sqrt{3}\right)^{2}-\left(\sqrt{2}\right)^{2}}+\frac{\sqrt{4}-\sqrt{3}}{\left(\sqrt{4}\right)^{2}-\left(\sqrt{3}\right)^{2}}\)
= \(\frac{\sqrt{2}-1}{2-1}+\frac{\sqrt{3}-\sqrt{2}}{3-2}+\frac{\sqrt{4}-\sqrt{3}}{4-3}\)
= \(\sqrt{2}-1+\sqrt{3}-\sqrt{2}+\sqrt{4}-\sqrt{3}\)
= \(-1+2\)
= \(1\)
এই আর্টিকেলে মাধ্যমিক (দশম শ্রেণী) গণিতের নবম অধ্যায়, ‘দ্বিঘাত করণী’ -এর ‘কষে দেখি – 9.3’ বিভাগের সমস্ত সমস্যার সমাধান করা হয়েছে।
আশা করি, এই আর্টিকেলটি আপনাদের পরীক্ষার প্রস্তুতিতে কিছুটা হলেও সহায়ক হয়েছে। যদি কোনো প্রশ্ন, মতামত বা সাহায্যের প্রয়োজন হয়, নিচে কমেন্ট করে জানাতে পারেন অথবা টেলিগ্রামের মাধ্যমে যোগাযোগ করতে পারেন—আমরা আপনাদের সকল প্রশ্নের উত্তর দেওয়ার জন্য সর্বদা প্রস্তুত।
মন্তব্য করুন