মাধ্যমিক গণিত – দ্বিঘাত করণী – কষে দেখি – 9.3

Rahul

এই আর্টিকেলে মাধ্যমিক (দশম শ্রেণী) গণিতের নবম অধ্যায়, ‘দ্বিঘাত করণী’ -এর ‘কষে দেখি – 9.3’ বিভাগের সমস্ত সমস্যার সমাধান করে দেওয়া হয়েছে। এই আর্টিকেলটি তোমাদের মাধ্যমিক পরীক্ষার প্রস্তুতিতে বিশেষভাবে সাহায্য করবে।

দ্বিঘাত করণী-কষে দেখি - 9.3-মাধ্যমিক গণিত
Contents Show

1. (a) \(m+\frac{1}{m}=\sqrt{3}\) হলে, (i) \(m^{2}+\frac{1}{m^{2}}\) এবং (ii) \(m^{3}+\frac{1}{m^{3}}\) -এদের সরলতম মান নির্ণয় করি।

সমাধান –

(i) \(m^{2}+\frac{1}{m^{2}}\)

\(m^{2}+\frac{1}{m^{2}}\)

= \(\left(m+\frac{1}{m}\right)^{2}-2\times m\times\frac{1}{m}\)

= \(\left(\sqrt{3}\right)^{2}-2\) [যেহেতু, \(\left(m+\frac{1}{m}\right)=\sqrt{3}\)]

= \(3-2\)

= \(1\)

(ii) \(m^{3}+\frac{1}{m^{3}}\)

\(m^{3}+\frac{1}{m^{3}}\)

= \(\left(m+\frac{1}{m}\right)^{3}-3\times m\times\frac{1}{m}\left(m+\frac{1}{m}\right)\)

= \(\left(\sqrt{3}\right)^{3}-3\times\left(\sqrt{3}\right)\) [যেহেতু, \(\left(m+\frac{1}{m}\right)=\sqrt{3}\)]

= \(3\sqrt{3}-3\sqrt{3}\)

= \(0\)

1. (b) দেখাই যে, \(\frac{\sqrt{5}+\sqrt{3}}{\sqrt{5}-\sqrt{3}}-\frac{\sqrt{5}-\sqrt{3}}{\sqrt{5}+\sqrt{3}}=2\sqrt{15}\)

সমাধান –

L.H.S = \(\frac{\sqrt{5}+\sqrt{3}}{\sqrt{5}-\sqrt{3}}-\frac{\sqrt{5}-\sqrt{3}}{\sqrt{5}+\sqrt{3}}\)

= \(\frac{\left(\sqrt{5}+\sqrt{3}\right)^{2}-\left(\sqrt{5}-\sqrt{3}\right)^{2}}{\left(\sqrt{5}-\sqrt{3}\right)\left(\sqrt{5}+\sqrt{3}\right)}\)

= \(\frac{4\times\sqrt{5}\times\sqrt{3}}{\left(\sqrt{5}\right)^{2}-\left(\sqrt{3}\right)^{2}}\) [∵ \(\left(a+b\right)^{2}-\left(a-b\right)^{2}=4ab\)]

= \(\frac{4\sqrt{15}}{5-3}\)

= \(\frac{4\sqrt{15}}{2}\)

= \(2\sqrt{15}\) = R.H.S

∴ L.H.S = R.H.S [প্রমাণিত]

2. সরল করি

(a) \(\frac{\sqrt{2}\left(2+\sqrt{3}\right)}{\sqrt{3}\left(\sqrt{3}+1\right)}-\frac{\sqrt{2}\left(2-\sqrt{3}\right)}{\sqrt{3}\left(\sqrt{3}-1\right)}\)

(b) \(\frac{3\sqrt{7}}{\sqrt{5}+\sqrt{2}}-\frac{5\sqrt{5}}{\sqrt{2}+\sqrt{7}}+\frac{2\sqrt{2}}{\sqrt{7}+\sqrt{5}}\)

(c) \(\frac{4\sqrt{3}}{2-\sqrt{2}}-\frac{30}{4\sqrt{3}-\sqrt{18}}-\frac{\sqrt{18}}{3-\sqrt{12}}\)

(d) \(\frac{3\sqrt{2}}{\sqrt{3}+\sqrt{6}}-\frac{4\sqrt{3}}{\sqrt{6}+\sqrt{2}}+\frac{\sqrt{6}}{\sqrt{2}+\sqrt{3}}\)

সমাধান –

(a) \(\frac{\sqrt{2}\left(2+\sqrt{3}\right)}{\sqrt{3}\left(\sqrt{3}+1\right)}-\frac{\sqrt{2}\left(2-\sqrt{3}\right)}{\sqrt{3}\left(\sqrt{3}-1\right)}\)

\(\frac{\sqrt{2}\left(2+\sqrt{3}\right)}{\sqrt{3}\left(\sqrt{3}+1\right)}-\frac{\sqrt{2}\left(2-\sqrt{3}\right)}{\sqrt{3}\left(\sqrt{3}-1\right)}\)

= \(\frac{\sqrt{2}\left(2+\sqrt{3}\right)\left(\sqrt{3}-1\right)-\sqrt{2}\left(2-\sqrt{3}\right)\left(\sqrt{3}+1\right)}{\sqrt{3}\left(\sqrt{3}+1\right)\left(\sqrt{3}-1\right)}\)

= \(\frac{\sqrt{2}\left(2\sqrt{3}+3-2-\sqrt{3}\right)-\sqrt{2}\left(2\sqrt{3}-3+2-\sqrt{3}\right)}{\sqrt{3}\left\{\left(\sqrt{3}\right)^{2}-\left(1\right)^{2}\right\}}\)

= \(\frac{\sqrt{2}\left(\sqrt{3}+1\right)-\sqrt{2}\left(\sqrt{3}-1\right)}{\sqrt{3}\left(3-1\right)}\)

= \(\frac{\sqrt{6}+\sqrt{2}-\sqrt{6}+\sqrt{2}}{\sqrt{3}\times 2}\)

= \(\frac{2\sqrt{2}}{2\sqrt{3}}\)

= \(\frac{\sqrt{2}}{\sqrt{3}}\)

= \(\frac{\sqrt{2}}{\sqrt{3}}\times\frac{\sqrt{3}}{\sqrt{3}}\) [হরের করণী নিরসন করে পাই]

= \(\frac{\sqrt{6}}{3}\)

(b) \(\frac{3\sqrt{7}}{\sqrt{5}+\sqrt{2}}-\frac{5\sqrt{5}}{\sqrt{2}+\sqrt{7}}+\frac{2\sqrt{2}}{\sqrt{7}+\sqrt{5}}\)

\(\frac{3\sqrt{7}}{\sqrt{5}+\sqrt{2}}-\frac{5\sqrt{5}}{\sqrt{2}+\sqrt{7}}+\frac{2\sqrt{2}}{\sqrt{7}+\sqrt{5}}\)

হরের করণী নিরসন করে পাই

= \(\frac{3\sqrt{7}}{\sqrt{5}+\sqrt{2}}\times\frac{\sqrt{5}-\sqrt{2}}{\sqrt{5}-\sqrt{2}}-\frac{5\sqrt{5}}{\sqrt{2}+\sqrt{7}}\times\frac{\sqrt{2}-\sqrt{7}}{\sqrt{2}-\sqrt{7}}+\frac{2\sqrt{2}}{\sqrt{7}+\sqrt{5}}\times\frac{\sqrt{7}-\sqrt{5}}{\sqrt{7}-\sqrt{5}}\)

= \(\frac{3\left(\sqrt{35}-\sqrt{14}\right)}{\left\{\left(\sqrt{5}\right)^{2}-\left(\sqrt{2}\right)^{2}\right\}}-\frac{5\left(\sqrt{10}-\sqrt{35}\right)}{\left\{\left(\sqrt{2}\right)^{2}-\left(\sqrt{7}\right)^{2}\right\}}+\frac{2\left(\sqrt{14}-\sqrt{10}\right)}{\left\{\left(\sqrt{7}\right)^{2}-\left(\sqrt{5}\right)^{2}\right\}}\) [যেহেতু, \(a^{2}-b^{2}=\left(a+b\right)\left(a-b\right)\)]

= \(\frac{3\left(\sqrt{35}-\sqrt{14}\right)}{5-2}-\frac{5\left(\sqrt{10}-\sqrt{35}\right)}{2-7}+\frac{2\left(\sqrt{14}-\sqrt{10}\right)}{7-5}\)

= \(\frac{3\left(\sqrt{35}-\sqrt{14}\right)}{3}-\frac{5\left(\sqrt{10}-\sqrt{35}\right)}{-5}+\frac{2\left(\sqrt{14}-\sqrt{10}\right)}{2}\)

= \(\left(\sqrt{35}-\sqrt{14}\right)+\left(\sqrt{10}-\sqrt{35}\right)+\left(\sqrt{14}-\sqrt{10}\right)\)

= \(0\)

(c) \(\frac{4\sqrt{3}}{2-\sqrt{2}}-\frac{30}{4\sqrt{3}-\sqrt{18}}-\frac{\sqrt{18}}{3-\sqrt{12}}\)

\(\frac{4\sqrt{3}}{2-\sqrt{2}}-\frac{30}{4\sqrt{3}-\sqrt{18}}-\frac{\sqrt{18}}{3-\sqrt{12}}\)

= \(\frac{4\sqrt{3}}{2-\sqrt{2}}-\frac{30}{4\sqrt{3}-\sqrt{3\times 3\times 2}}-\frac{\sqrt{3\times 3\times 2}}{3-\sqrt{2\times 2\times 3}}\)

= \(\frac{4\sqrt{3}}{2-\sqrt{2}}-\frac{30}{4\sqrt{3}-3\sqrt{2}}-\frac{3\sqrt{2}}{3-2\sqrt{3}}\)

হরের করণী নিরসন করে পাই

= \(\frac{4\sqrt{3}}{2-\sqrt{2}}\times\frac{2+\sqrt{2}}{2+\sqrt{2}}-\frac{30}{4\sqrt{3}-3\sqrt{2}}\times\frac{4\sqrt{3}+3\sqrt{2}}{4\sqrt{3}+3\sqrt{2}}-\frac{3\sqrt{2}}{3-2\sqrt{3}}\times\frac{3+2\sqrt{3}}{3+2\sqrt{3}}\)

= \(\frac{4\left(2\sqrt{3}+\sqrt{6}\right)}{\left\{\left(2\right)^{2}-\left(\sqrt{2}\right)^{2}\right\}}-\frac{30\left(4\sqrt{3}+3\sqrt{2}\right)}{\left\{\left(4\sqrt{3}\right)^{2}-\left(3\sqrt{2}\right)^{2}\right\}}-\frac{3\left(3\sqrt{2}+2\sqrt{6}\right)}{\left\{\left(3\right)^{2}-\left(2\sqrt{3}\right)^{2}\right\}}\) [যেহেতু, \(a^{2}-b^{2}=\left(a+b\right)\left(a-b\right)\)]

= \(\frac{4\left(2\sqrt{3}+\sqrt{6}\right)}{4-2}-\frac{30\left(4\sqrt{3}+3\sqrt{2}\right)}{48-18}-\frac{3\left(3\sqrt{2}+2\sqrt{6}\right)}{9-12}\)

= \(\frac{4\left(2\sqrt{3}+\sqrt{6}\right)}{2}-\frac{30\left(4\sqrt{3}+3\sqrt{2}\right)}{30}-\frac{3\left(3\sqrt{2}+2\sqrt{6}\right)}{-3}\)

= \(2\left(2\sqrt{3}+\sqrt{6}\right)-\left(4\sqrt{3}+3\sqrt{2}\right)+\left(3\sqrt{2}+2\sqrt{6}\right)\)

= \(4\sqrt{6}\)

(d) \(\frac{3\sqrt{2}}{\sqrt{3}+\sqrt{6}}-\frac{4\sqrt{3}}{\sqrt{6}+\sqrt{2}}+\frac{\sqrt{6}}{\sqrt{2}+\sqrt{3}}\)

\(\frac{3\sqrt{2}}{\sqrt{3}+\sqrt{6}}-\frac{4\sqrt{3}}{\sqrt{6}+\sqrt{2}}+\frac{\sqrt{6}}{\sqrt{2}+\sqrt{3}}\)

হরের করণী নিরসন করে পাই

= \(\frac{3\sqrt{2}}{\sqrt{3}+\sqrt{6}}\times\frac{\sqrt{3}-\sqrt{6}}{\sqrt{3}-\sqrt{6}}-\frac{4\sqrt{3}}{\sqrt{6}+\sqrt{2}}\times\frac{\sqrt{6}-\sqrt{2}}{\sqrt{6}-\sqrt{2}}+\frac{\sqrt{6}}{\sqrt{2}+\sqrt{3}}\times\frac{\sqrt{2}-\sqrt{3}}{\sqrt{2}-\sqrt{3}}\)

= \(\frac{3\left(\sqrt{6}-\sqrt{12}\right)}{\left\{\left(\sqrt{3}\right)^{2}-\left(\sqrt{6}\right)^{2}\right\}}-\frac{4\left(\sqrt{18}-\sqrt{6}\right)}{\left\{\left(\sqrt{6}\right)^{2}-\left(\sqrt{2}\right)^{2}\right\}}+\frac{\left(\sqrt{12}-\sqrt{18}\right)}{\left\{\left(\sqrt{2}\right)^{2}-\left(\sqrt{3}\right)^{2}\right\}}\)

= \(\frac{3\left(\sqrt{6}-\sqrt{12}\right)}{3-6}-\frac{4\left(\sqrt{18}-\sqrt{6}\right)}{6-2}+\frac{\left(\sqrt{12}-\sqrt{18}\right)}{2-3}\)

= \(\frac{3\left(\sqrt{6}-\sqrt{12}\right)}{-3}-\frac{4\left(\sqrt{18}-\sqrt{6}\right)}{4}+\frac{\left(\sqrt{12}-\sqrt{18}\right)}{-1}\)

= \(-\left(\sqrt{6}-\sqrt{12}\right)-\left(\sqrt{18}-\sqrt{6}\right)-\left(\sqrt{12}-\sqrt{18}\right)\)

= \(0\)

3. যদি x = 2, y = 3 এবং z = 6 হয় তবে, \(\frac{3\sqrt{x}}{\sqrt{y}+\sqrt{z}}-\frac{4\sqrt{y}}{\sqrt{z}+\sqrt{x}}+\frac{\sqrt{z}}{\sqrt{x}+\sqrt{y}}\) -এর মান হিসাব করে লিখি।

সমাধান –

\(\frac{3\sqrt{x}}{\sqrt{y}+\sqrt{z}}-\frac{4\sqrt{y}}{\sqrt{z}+\sqrt{x}}+\frac{\sqrt{z}}{\sqrt{x}+\sqrt{y}}\)

x, y এবং z এর মান বসিয়ে পাই,

\(\frac{3\sqrt{2}}{\sqrt{3}+\sqrt{6}}-\frac{4\sqrt{3}}{\sqrt{6}+\sqrt{2}}+\frac{\sqrt{6}}{\sqrt{2}+\sqrt{3}}\)

হরের করণী নিরসন করে পাই

= \(\frac{3\sqrt{2}}{\sqrt{3}+\sqrt{6}}\times\frac{\sqrt{3}-\sqrt{6}}{\sqrt{3}-\sqrt{6}}-\frac{4\sqrt{3}}{\sqrt{6}+\sqrt{2}}\times\frac{\sqrt{6}-\sqrt{2}}{\sqrt{6}-\sqrt{2}}+\frac{\sqrt{6}}{\sqrt{2}+\sqrt{3}}\times\frac{\sqrt{2}-\sqrt{3}}{\sqrt{2}-\sqrt{3}}\)

= \(\frac{3\left(\sqrt{6}-\sqrt{12}\right)}{\left\{\left(\sqrt{3}\right)^{2}-\left(\sqrt{6}\right)^{2}\right\}}-\frac{4\left(\sqrt{18}-\sqrt{6}\right)}{\left\{\left(\sqrt{6}\right)^{2}-\left(\sqrt{2}\right)^{2}\right\}}+\frac{\left(\sqrt{12}-\sqrt{18}\right)}{\left\{\left(\sqrt{2}\right)^{2}-\left(\sqrt{3}\right)^{2}\right\}}\) [যেহেতু, \(a^{2}-b^{2}=\left(a+b\right)\left(a-b\right)\)]

= \(\frac{3\left(\sqrt{6}-\sqrt{12}\right)}{3-6}-\frac{4\left(\sqrt{18}-\sqrt{6}\right)}{6-2}+\frac{\left(\sqrt{12}-\sqrt{18}\right)}{2-3}\)

= \(\frac{3\left(\sqrt{6}-\sqrt{12}\right)}{-3}-\frac{4\left(\sqrt{18}-\sqrt{6}\right)}{4}+\frac{\left(\sqrt{12}-\sqrt{18}\right)}{-1}\)

= \(-\left(\sqrt{6}-\sqrt{12}\right)-\left(\sqrt{18}-\sqrt{6}\right)-\left(\sqrt{12}-\sqrt{18}\right)\)

= \(0\)

4.[ latex]x=\sqrt{7}+\sqrt{6}[/latex] হলে, (i) \(x-\frac{1}{x}\) (ii) \(x+\frac{1}{x}\) (iii) \(x^{2}+\frac{1}{x^{2}}\) এবং (iv) \(x^{3}+\frac{1}{x^{3}}\) -এর সরলতম মানগুলি নির্ণয় করি।

সমাধান –

\(x=\sqrt{7}+\sqrt{6}\)

∴ \(\frac{1}{x}=\frac{1}{\sqrt{7}+\sqrt{6}}\)

= \(\frac{1}{\sqrt{7}+\sqrt{6}}\times\frac{\sqrt{7}-\sqrt{6}}{\sqrt{7}-\sqrt{6}}\) [হরের করণী নিরসন করে পাই]

= \(\frac{\sqrt{7}-\sqrt{6}}{\left(\sqrt{7}\right)^{2}-\left(\sqrt{6}\right)^{2}}\) [যেহেতু, \(a^{2}-b^{2}=\left(a+b\right)\left(a-b\right)\)]

= \(\frac{\sqrt{7}-\sqrt{6}}{7-6}\)

= \(\frac{\sqrt{7}-\sqrt{6}}{1}\)

= \(\sqrt{7}-\sqrt{6}\)

(i) \(x-\frac{1}{x}\)

= \(\left(\sqrt{7}+\sqrt{6}\right)-\left(\sqrt{7}-\sqrt{6}\right)\)

= \(2\sqrt{6}\)

(ii) \(x+\frac{1}{x}\)

= \(\left(\sqrt{7}+\sqrt{6}\right)+\left(\sqrt{7}-\sqrt{6}\right)\)

= \(2\sqrt{7}\)

(iii) \(x^{2}+\frac{1}{x^{2}}\)

= \(\left(x-\frac{1}{x}\right)^{2}+2\times x\times\frac{1}{x}\)

= \(\left(2\sqrt{6}\right)^{2}+2\times 1\)

= \(24+2\)

= \(26\)

(iv) \(x^{3}+\frac{1}{x^{3}}\)

= \(\left(x+\frac{1}{x}\right)^{3}-3\times x\times\frac{1}{x}\left(x+\frac{1}{x}\right)\)

= \(\left(2\sqrt{7}\right)^{3}-3\times 1\times\left(2\sqrt{7}\right)\)

= \(56\sqrt{7}-6\sqrt{7}\)

= \(50\sqrt{7}\)

5. সরল করি – \(\frac{x+\sqrt{x^{2}-1}}{x-\sqrt{x^{2}-1}}+\frac{x-\sqrt{x^{2}-1}}{x+\sqrt{x^{2}-1}}\) সরলফল 14 হলে, x -এর মান কী কী হবে হিসাব করে লিখি।

সমাধান –

\(\frac{x+\sqrt{x^{2}-1}}{x-\sqrt{x^{2}-1}}+\frac{x-\sqrt{x^{2}-1}}{x+\sqrt{x^{2}-1}}\)

= \(\frac{\left(x+\sqrt{x^{2}-1}\right)^{2}+\left(x-\sqrt{x^{2}-1}\right)^{2}}{\left(x-\sqrt{x^{2}-1}\right)\left(x+\sqrt{x^{2}-1}\right)}\)

= \(\frac{2\left\{x^{2}+\left(\sqrt{x^{2}-1}\right)^{2}\right\}}{\left(x\right)^{2}-\left(\sqrt{x^{2}-1}\right)^{2}}\)

[∵ \(\left(a+b\right)^{2}+\left(a-b\right)^{2}=2\left(a^{2}+b^{2}\right)\)]

= \(\frac{2\left(x^{2}+x^{2}-1\right)}{x^{2}-\left(x^{2}-1\right)}\)

= \(\frac{2\left(2x^{2}-1\right)}{x^{2}-x^{2}+1}\)

= \(4x^{2}-2\)

যেহেতু প্রদত্ত রাশির মান 14

∴ \(4x^{2}-2=14\)

বা, \(4x^{2}=14+2\)

বা, \(4x^{2}=16\)

বা, \(x^{2}=\frac{16}{4}\)

বা, \(x^{2}=4\)

বা, \(x=\pm\sqrt{4}\)

বা, \(x=\pm 2\)

∴ x -এর মান ±2

6. যদি \(a=\frac{\sqrt{5}+1}{\sqrt{5}-1}\) ও \(b=\frac{\sqrt{5}-1}{\sqrt{5}+1}\) হয়, তবে নীচের মানগুলি নির্ণয় করি।

(i) \(\frac{a^{2}+ab+b^{2}}{a^{2}-ab+b^{2}}\)

(ii) \(\frac{\left(a-b\right)^{3}}{\left(a+b\right)^{3}}\)

(iii) \(\frac{3a^{2}+5ab+3b^{2}}{3a^{2}-5ab+b^{2}}\)

(iv) \(\frac{a^{3}+b^{3}}{a^{3}-b^{3}}\)

সমাধান –

\(a=\frac{\sqrt{5}+1}{\sqrt{5}-1}\) ও \(b=\frac{\sqrt{5}-1}{\sqrt{5}+1}\)

∴ \(a+b=\frac{\sqrt{5}+1}{\sqrt{5}-1}+\frac{\sqrt{5}-1}{\sqrt{5}+1}\)

= \(\frac{\left(\sqrt{5}+1\right)^{2}+\left(\sqrt{5}-1\right)^{2}}{\left(\sqrt{5}-1\right)\left(\sqrt{5}+1\right)}\)

= \(\frac{2\left\{\left(\sqrt{5}\right)^{2}+\left(1\right)^{2}\right\}}{\left(\sqrt{5}\right)^{2}-\left(1\right)^{2}}\)

[∵ \(\left(a+b\right)^{2}+\left(a-b\right)^{2}=2\left(a^{2}+b^{2}\right)\)]

= \(\frac{2\left(5+1\right)}{5-1}\)

= \(\frac{2\times 6}{4}\)

= \(\frac{12}{4}\)

= \(4\)

\(a=\frac{\sqrt{5}+1}{\sqrt{5}-1}\) ও \(b=\frac{\sqrt{5}-1}{\sqrt{5}+1}\)

∴ \(a-b=\frac{\sqrt{5}+1}{\sqrt{5}-1}-\frac{\sqrt{5}-1}{\sqrt{5}+1}\)

= \(\frac{\left(\sqrt{5}+1\right)^{2}-\left(\sqrt{5}-1\right)^{2}}{\left(\sqrt{5}-1\right)\left(\sqrt{5}+1\right)}\)

= \(\frac{4\times\sqrt{5}\times 1}{\left(\sqrt{5}\right)^{2}-\left(1\right)^{2}}\) [∵ \(\left(a+b\right)^{2}-\left(a-b\right)^{2}=4ab\)]

= \(\frac{4\sqrt{5}}{5-1}\)

= \(\frac{4\sqrt{5}}{4}\)

= \(\sqrt{5}\)

\(a=\frac{\sqrt{5}+1}{\sqrt{5}-1}\) ও \(b=\frac{\sqrt{5}-1}{\sqrt{5}+1}\)

∴ \(a\times b=\frac{\sqrt{5}+1}{\sqrt{5}-1}\times\frac{\sqrt{5}-1}{\sqrt{5}+1}\)

= \(1\)

(i) \(\frac{a^{2}+ab+b^{2}}{a^{2}-ab+b^{2}}\)

\(\frac{a^{2}+ab+b^{2}}{a^{2}-ab+b^{2}}\)

= \(\frac{a^{2}+2ab+b^{2}-ab}{a^{2}-2ab+b^{2}+ab}\)

= \(\frac{\left(a+b\right)^{2}-ab}{\left(a-b\right)^{2}+ab}\)

= \(\frac{\left(4\right)^{2}-1}{\left(\sqrt{5}\right)^{2}+1}\) [∵ a + b = 4, a – b = \(\sqrt{5}\) এবং ab = 1]

= \(\frac{16-1}{5+1}\)

= \(\frac{15}{6}\)

= \(\frac{5}{2}\)

= \(2.5\)

(ii) \(\frac{\left(a-b\right)^{3}}{\left(a+b\right)^{3}}\)

\(\frac{\left(a-b\right)^{3}}{\left(a+b\right)^{3}}\)

= \(\frac{\left(\sqrt{5}\right)^{3}}{\left(4\right)^{3}}\) [∵ a + b = 4, a – b = \(\sqrt{5}\)]

= \(\frac{5\sqrt{5}}{64}\)

(iii) \(\frac{3a^{2}+5ab+3b^{2}}{3a^{2}-5ab+b^{2}}\)

\(\frac{3a^{2}+5ab+3b^{2}}{3a^{2}-5ab+b^{2}}\)

= \(\frac{3a^{2}+6ab+3b^{2}-ab}{3a^{2}-6ab+3b^{2}+ab}\)

= \(\frac{3\left(a^{2}+2ab+b^{2}\right)-ab}{3\left(a^{2}-2ab+b^{2}\right)+ab}\)

= \(\frac{3\left(a+b\right)^{2}-ab}{3\left(a-b\right)^{2}+ab}\)

= \(\frac{3\left(4\right)^{2}-1}{3\left(\sqrt{5}\right)^{2}+1}\)

[∵ a + b = 4, a – b = \(\sqrt{5}\) এবং ab = 1]

= \(\frac{48-1}{15+1}\)

= \(\frac{47}{16}\)

= \(2.9375\)

(iv) \(\frac{a^{3}+b^{3}}{a^{3}-b^{3}}\)

\(\frac{a^{3}+b^{3}}{a^{3}-b^{3}}\)

= \(\frac{\left(a+b\right)^{3}-3ab\left(a+b\right)}{\left(a-b\right)^{3}+3ab\left(a-b\right)}\)

= \(\frac{\left(4\right)^{3}-3\times 1\times\left(4\right)}{\left(\sqrt{5}\right)^{3}+3\left(1\right)\left(\sqrt{5}\right)}\)

= \(\frac{64-12}{5\sqrt{5}+3\sqrt{5}}\)

= \(\frac{52}{8\sqrt{5}}\)

= \(\frac{13}{2\sqrt{5}}\)

= \(\frac{13\times\sqrt{5}}{2\sqrt{5}\times\sqrt{5}}\) [হরের করণী নিরসন করে পাই]

= \(\frac{13\sqrt{5}}{10}\)

7.যদি \(x=2+\sqrt{3}\), \(y=2-\sqrt{3}\) হয়, তবে নিম্নলিখিতগুলির সরলতম মান নির্ণয় করি।

(a) (i)\(x-\frac{1}{x}\) (ii) \(y^{2}+\frac{1}{y^{2}}\) (iii) \(x^{3}-\frac{1}{x^{3}}\) (iv) \(xy+\frac{1}{xy}\)

(b) \(3x^{2}-5xy+3y^{2}\)

সমাধান –

\(x=2+\sqrt{3}\)

∴ \(\frac{1}{x}=\frac{1}{2+\sqrt{3}}\)

বা, \(\frac{1}{x}=\frac{1}{2+\sqrt{3}}\times\frac{2-\sqrt{3}}{2-\sqrt{3}}\) [হরের করণী নিরসন করে পাই]

বা, \(\frac{1}{x}=\frac{2-\sqrt{3}}{\left(2\right)^{2}-\left(\sqrt{3}\right)^{2}}\)

বা, \(\frac{1}{x}=\frac{2-\sqrt{3}}{4-3}\)

বা, \(\frac{1}{x}=2-\sqrt{3}\)

আবার, \(y=2-\sqrt{3}\)

বা, \(\frac{1}{y}=\frac{1}{2-\sqrt{3}}\)

বা, \(\frac{1}{y}=\frac{1}{2-\sqrt{3}}\times\frac{2+\sqrt{3}}{2+\sqrt{3}}\) [হরের করণী নিরসন করে পাই]

বা, \(\frac{1}{y}=\frac{2+\sqrt{3}}{\left(2\right)^{2}-\left(\sqrt{3}\right)^{2}}\)

বা, \(\frac{1}{y}=\frac{2+\sqrt{3}}{4-3}\)

বা, \(\frac{1}{y}=2+\sqrt{3}\)

(a) (i) \(x-\frac{1}{x}\)

\(x-\frac{1}{x}\)

= \(\left(2+\sqrt{3}\right)-\left(2-\sqrt{3}\right)\)

= \(2\sqrt{3}\)

(a) (ii) \(y^{2}+\frac{1}{y^{2}}\)

\(y^{2}+\frac{1}{y^{2}}\)

= \(\left(y+\frac{1}{y}\right)^{2}-2\times y\times\frac{1}{y}\)

= \(\left(2-\sqrt{3}+2+\sqrt{3}\right)^{2}-2\) [∴ y এবং \(\frac{1}{y}\) এর মান বসিয়ে পাই]

= \(\left(4\right)^{2}-2\)

= \(16-2\)

= \(14\)

(a) (iii) \(x^{3}-\frac{1}{x^{3}}\)

\(x^{3}-\frac{1}{x^{3}}\)

\(\left(x – \frac{1}{x}\right)^{3}
+ 3 \cdot \left(x \cdot \frac{1}{x}\right)\left(x – \frac{1}{x}\right)\)

= \(\left(2\sqrt{3}\right)^{3}+3\left(2\sqrt{3}\right)\) [\(\left(x-\frac{1}{x}\right)\) এর মান বসিয়ে পাই]

= \(24\sqrt{3}+6\sqrt{3}\)

= \(30\sqrt{3}\)

(a) (iv) \(xy+\frac{1}{xy}\)

\(xy+\frac{1}{xy}\)

\(x=2+\sqrt{3}\) এবং \(y=2-\sqrt{3}\)

∴ x × y

= \(\left(2+\sqrt{3}\right)\left(2-\sqrt{3}\right)\)

= \(\left(2\right)^{2}-\left(\sqrt{3}\right)^{2}\)

= \(4-3\)

= \(1\)

∴ \(xy+\frac{1}{xy}\)

= \(1+\frac{1}{1}\)

= \(2\)

(b) \(3x^{2}-5xy+3y^{2}\)

\(x=2+\sqrt{3}\) এবং \(y=2-\sqrt{3}\)

∴ x × y

= \(\left(2+\sqrt{3}\right)\left(2-\sqrt{3}\right)\)

= \(\left(2\right)^{2}-\left(\sqrt{3}\right)^{2}\)

= \(4-3\)

= \(1\)

এবং (x – y)

= \(\left\{\left(2+\sqrt{3}\right)-\left(2-\sqrt{3}\right)\right\}\)

= \(2\sqrt{3}\)

∴ \(3x^{2}-5xy+3y^{2}\)

= \(3x^{2}-6xy+3y^{2}+xy\)

= \(3\left(x^{2}-2xy+y^{2}\right)+xy\)

= \(3\left(x-y\right)^{2}+xy\)

= \(3\left(2\sqrt{3}\right)^{2}+1\) [(x – y) এবং xy এর মান বসিয়ে পাই]

= \(3\times 12+1\)

= \(36+1\)

= \(37\)

8.\(x=\frac{\sqrt{7}+\sqrt{3}}{\sqrt{7}-\sqrt{3}}\) এবং xy = 1 হলে, দেখাই যে, \(\frac{x^{2}+xy+y^{2}}{x^{2}-xy+y^{2}}=\frac{12}{11}\)

সমাধান –

\(x=\frac{\sqrt{7}+\sqrt{3}}{\sqrt{7}-\sqrt{3}}\)

এবং xy = 1

∴ \(y=\frac{1}{x}\)

বা, \(y=\frac{1}{\frac{\sqrt{7}+\sqrt{3}}{\sqrt{7}-\sqrt{3}}}\)

বা, \(y=\frac{\sqrt{7}-\sqrt{3}}{\sqrt{7}+\sqrt{3}}\)

∴ x + y

= \(\frac{\sqrt{7}+\sqrt{3}}{\sqrt{7}-\sqrt{3}}+\frac{\sqrt{7}-\sqrt{3}}{\sqrt{7}+\sqrt{3}}\)

= \(\frac{\left(\sqrt{7}+\sqrt{3}\right)^{2}+\left(\sqrt{7}-\sqrt{3}\right)^{2}}{\left(\sqrt{7}-\sqrt{3}\right)\left(\sqrt{7}+\sqrt{3}\right)}\)

= \(\frac{2\left\{\left(\sqrt{7}\right)^{2}+\left(\sqrt{3}\right)^{2}\right\}}{\left(\sqrt{7}\right)^{2}-\left(\sqrt{3}\right)^{2}}\) [∵ \(\left(a+b\right)^{2}+\left(a-b\right)^{2}=2\left(a^{2}+b^{2}\right)\)]

= \(\frac{2\left(7+3\right)}{7-3}\)

= \(\frac{2\times 10}{4}\)

= \(\frac{20}{4}\)

= \(5\)

∴ \(\frac{x^{2}+xy+y^{2}}{x^{2}-xy+y^{2}}\)

= \(\frac{x^{2}+2xy+y^{2}-xy}{x^{2}+2xy+y^{2}-3xy}\)

= \(\frac{\left(x+y\right)^{2}-xy}{\left(x+y\right)^{2}-3xy}\)

= \(\frac{\left(5\right)^{2}-1}{\left(5\right)^{2}-3\times 1}\)

= \(\frac{25-1}{25-3}\)

= \(\frac{24}{22}\)

= \(\frac{12}{11}\) [প্রমাণিত]

9. \(\left(\sqrt{7}+1\right)\) এবং \(\left(\sqrt{5}+\sqrt{3}\right)\) -এর মধ্যে কোনটি বড়ো লিখি।

সমাধান –

\(\left(\sqrt{7}+1\right)^{2}\)

= \(\left(\sqrt{7}\right)^{2}+2\times\sqrt{7}\times 1+\left(1\right)^{2}\)

= \(7+2\sqrt{7}+1\)

= \(8+2\sqrt{7}\)

আবার

\(\left(\sqrt{5}+\sqrt{3}\right)^{2}\)

= \(\left(\sqrt{5}\right)^{2}+2\times\sqrt{5}\times\sqrt{3}+\left(\sqrt{3}\right)^{2}\)

= \(5+2\sqrt{15}+3\)

= \(8+2\sqrt{15}\)

এখন, \(8+2\sqrt{15}>8+2\sqrt{7}\) [∵ \(\sqrt{15}>\sqrt{7}\Rightarrow 2\sqrt{15}>2\sqrt{7}\)]

∴ \(\left(\sqrt{5}+\sqrt{3}\right)^{2}>\left(\sqrt{7}+1\right)^{2}\)

∴ \(\left(\sqrt{5}+\sqrt{3}\right)>\left(\sqrt{7}+1\right)\)

10. অতিসংক্ষিপ্ত উত্তরধর্মী প্রশ্ন (V.S.A.)

(A) বহুবিকল্পীয় প্রশ্ন (M.C.Q) –

(i) \(x=2+\sqrt{3}\) হলে, \(x+\frac{1}{x}\) -এর মান

(a) 2
(b) \(2\sqrt{3}\)
(c) 4
(d) \(2-\sqrt{3}\)

উত্তর – (c) 4

সমাধান,

\(x=2+\sqrt{3}\)

∴ \(\frac{1}{x}=\frac{1}{2+\sqrt{3}}\)

বা, \(\frac{1}{x}=\frac{1}{2+\sqrt{3}}\times\frac{2-\sqrt{3}}{2-\sqrt{3}}\)

বা, \(\frac{1}{x}=\frac{2-\sqrt{3}}{\left(2\right)^{2}-\left(\sqrt{3}\right)^{2}}\)

বা, \(\frac{1}{x}=\frac{2-\sqrt{3}}{4-3}\)

বা, \(\frac{1}{x}=2-\sqrt{3}\)

∴ \(x+\frac{1}{x}\)

= \(\left(2+\sqrt{3}\right)+\left(2-\sqrt{3}\right)\)

= \(4\)

∴ \(x+\frac{1}{x}=4\)

(ii) যদি \(p+q=\sqrt{13}\) এবং \(p-q=\sqrt{5}\) হয়, তাহলে pq -এর মান

(a) 2
(b) 18
(c) 9
(d) 8

উত্তর – (a) 2

সমাধান,

\(pq=\left(\frac{p+q}{2}\right)^{2}-\left(\frac{p-q}{2}\right)^{2}\) [∵ \(ab=\left(\frac{a+b}{2}\right)^{2}-\left(\frac{a-b}{2}\right)^{2}\)]

= \(\left(\frac{\sqrt{13}}{2}\right)^{2}-\left(\frac{\sqrt{5}}{2}\right)^{2}\) [∵ \(p+q=\sqrt{13}\) এবং \(p-q=\sqrt{5}\)]

= \(\frac{13}{4}-\frac{5}{4}\)

= \(\frac{13-5}{4}\)

= \(\frac{8}{4}\)

= \(2\)

(iii) যদি \(a+b=\sqrt{5}\) এবং \(a-b=\sqrt{3}\) হয়, তাহলে \(\left(a^{2}+b^{2}\right)\) -এর মান

(a) 8
(b) 4
(c) 2
(d) 1

উত্তর – (b) 4

সমাধান,

\(ab=\left(\frac{a+b}{2}\right)^{2}-\left(\frac{a-b}{2}\right)^{2}\)

= \(\left(\frac{\sqrt{5}}{2}\right)^{2}-\left(\frac{\sqrt{3}}{2}\right)^{2}\)

= \(\frac{5}{4}-\frac{3}{4}\)

= \(\frac{5-3}{4}\)

= \(\frac{2}{4}\)

= \(\frac{1}{2}\)

∴ (a2 + b2)

= (a + b)2 – 2ab

= \(\left(\sqrt{5}\right)^{2}-2\times\frac{1}{2}\)

= \(5-1\)

= \(4\)

(iv) \(\sqrt{125}\) থেকে \(\sqrt{5}\) বিয়োগ করলে বিয়োগফল হবে

(a) \(\sqrt{80}\)
(b) \(\sqrt{120}\)
(c) \(\sqrt{100}\)
(d) কোনটিই নয়

উত্তর – (a) \(\sqrt{80}\)

সমাধান,

\(\sqrt{125}-\sqrt{5}\)

= \(\sqrt{5\times 5\times 5}-\sqrt{5}\)

= \(5\sqrt{5}-\sqrt{5}\)

= \(4\sqrt{5}\)

= \(\sqrt{5\times 4\times 4}\)

= \(\sqrt{80}\)

(v) \(\left(5-\sqrt{3}\right)\left(\sqrt{3}-1\right)\left(5+\sqrt{3}\right)\left(\sqrt{3}+1\right)\) -এর গুণফল

(a) 22
(b) 44
(c) 2
(d) 11

উত্তর – (b) 44

সমাধান,

\(\left(5-\sqrt{3}\right)\left(\sqrt{3}-1\right)\left(5+\sqrt{3}\right)\left(\sqrt{3}+1\right)\)

= \(\left(5-\sqrt{3}\right)\left(5+\sqrt{3}\right)\left(\sqrt{3}-1\right)\left(\sqrt{3}+1\right)\)

= \(\left\{\left(5\right)^{2}-\left(\sqrt{3}\right)^{2}\right\}\left\{\left(\sqrt{3}\right)^{2}-\left(1\right)^{2}\right\}\)

= \(\left(25-3\right)\left(3-1\right)\)

= \(22\times 2\)

= \(44\)

(B) নীচের বিবৃতিগুলি সত্য না মিথ্যা লিখি –

(i) \(\sqrt{75}\) এবং \(\sqrt{147}\) সদৃশ করণী।

উত্তর – সত্য।

সমাধান,

\(\sqrt{75}=\sqrt{5\times 5\times 3}=5\sqrt{3}\)

\(\sqrt{147}=\sqrt{7\times 7\times 3}=7\sqrt{3}\)

অর্থাৎ প্রদত্ত করণীদুটি সদৃশ।

(ii) \(\sqrt{\pi}\) একটি দ্বিঘাত করণী।

উত্তর – মিথ্যা।

সমাধান,

\(\sqrt{\pi}\) একটি দ্বিঘাত করণী নয়

অর্থাৎ বিবৃতি মিথ্যা।

(C) শূন্যস্থান পূরণ করি –

(i) \(5\sqrt{11}\) একটি ___ সংখ্যা। (মূলদ/অমূলদ)

উত্তর – অমূলদ।

(ii) \(\left(\sqrt{3}-5\right)\) -এর অনুবন্ধী করণী ___।

উত্তর – \(\left(-\sqrt{3}-5\right)\)

(iii) দুটি দ্বিঘাত করণীর যোগফল ও গুণফল একটি মূলদ সংখ্যা হলে করণীদ্বয় ___ করণী।

উত্তর – অনুবন্ধী।

11. সংক্ষিপ্তধর্মী উত্তরপ্রশ্ন (S.A.)

(i) \(x=3+2\sqrt{2}\) হলে, \(x+\frac{1}{x}\) -এর মান লিখি।

সমাধান –

\(x=3+2\sqrt{2}\)

বা, \(\frac{1}{x}=\frac{1}{3+2\sqrt{2}}\times\frac{3-2\sqrt{2}}{3-2\sqrt{2}}\)

বা, \(\frac{1}{x}=\frac{3-2\sqrt{2}}{\left(3\right)^{2}-\left(2\sqrt{2}\right)^{2}}\)

বা, \(\frac{1}{x}=\frac{3-2\sqrt{2}}{9-8}\)

বা, \(\frac{1}{x}=3-2\sqrt{2}\)

∴ \(x+\frac{1}{x}\)

= \(\left(3+2\sqrt{2}\right)+\left(3-2\sqrt{2}\right)\)

= \(6\)

∴ \(x+\frac{1}{x}=6\)

(ii) \(\left(\sqrt{15}+\sqrt{3}\right)\) এবং \(\left(\sqrt{10}+\sqrt{8}\right)\) -এর মধ্যে কোনটি বড়ো লিখি।

সমাধান –

\(\left(\sqrt{15}+\sqrt{3}\right)^{2}\)

= \(\left(\sqrt{15}\right)^{2}+2\times\sqrt{15}\times\sqrt{3}+\left(\sqrt{3}\right)^{2}\)

= \(15+2\sqrt{45}+3\)

= \(18+2\sqrt{45}\)

এবং \(\left(\sqrt{10}+\sqrt{8}\right)^{2}\)

= \(\left(\sqrt{10}\right)^{2}+2\times\sqrt{10}\times\sqrt{8}+\left(\sqrt{8}\right)^{2}\)

= \(10+2\sqrt{80}+8\)

= \(18+2\sqrt{80}\)

এখন, \(18+2\sqrt{80}>18+2\sqrt{45}\) [যেহেতু, \(\sqrt{80}>\sqrt{45}\)]

∴ \(\left(\sqrt{10}+\sqrt{8}\right)^{2}>\left(\sqrt{15}+\sqrt{3}\right)^{2}\)

∴ \(\left(\sqrt{10}+\sqrt{8}\right)>\left(\sqrt{15}+\sqrt{3}\right)\)

∴ \(\left(\sqrt{10}+\sqrt{8}\right)\) এই দ্বিঘাত করণীটি বড়ো।

(iii) দুটি মিশ্র দ্বিঘাত করণী লিখি যাদের গুণফল একটি মূলদ সংখ্যা।

\(\left(\sqrt{3}+2\right)\) এবং \(\left(\sqrt{3}-2\right)\) হল দুটি মিশ্র দ্বিঘাত করণী যাদের গুনফল একটি মূলদ সংখ্যা।

(iv) \(\sqrt{72}\) থেকে কত বিয়োগ করলে \(\sqrt{32}\) হবে তা লিখি।

সমাধান –

ধরি \(\sqrt{72}\) থেকে x বিয়োগ করলে \(\sqrt{32}\) হবে।

∴ \(\sqrt{72}-x=\sqrt{32}\)

বা, \(x=\sqrt{72}-\sqrt{32}\)

বা, \(x=\sqrt{2\times 2\times 2\times 3\times 3}-\sqrt{2\times 2\times 2\times 2\times 2}\)

বা, \(x=2\times 3\sqrt{2}-2\times 2\sqrt{2}\)

বা, \(x=6\sqrt{2}-4\sqrt{2}\)

বা, \(x=2\sqrt{2}\)

∴ \(\sqrt{72}\) থেকে \(2\sqrt{2}\) বিয়োগ করলে \(\sqrt{32}\) হবে।

(v) \(\left(\frac{1}{\sqrt{2}+1}+\frac{1}{\sqrt{3}+\sqrt{2}}+\frac{1}{\sqrt{4}+\sqrt{3}}\right)\) -এর সরলতম মান লিখি।

সমাধান –

\(\frac{1}{\sqrt{2}+1}+\frac{1}{\sqrt{3}+\sqrt{2}}+\frac{1}{\sqrt{4}+\sqrt{3}}\)

হরের করণী নিরসন করে পাই

= \(\frac{1}{\sqrt{2}+1}\times\frac{\sqrt{2}-1}{\sqrt{2}-1}+\frac{1}{\sqrt{3}+\sqrt{2}}\times\frac{\sqrt{3}-\sqrt{2}}{\sqrt{3}-\sqrt{2}}+\frac{1}{\sqrt{4}+\sqrt{3}}\times\frac{\sqrt{4}-\sqrt{3}}{\sqrt{4}-\sqrt{3}}\)

= \(\frac{\sqrt{2}-1}{\left(\sqrt{2}\right)^{2}-\left(1\right)^{2}}+\frac{\sqrt{3}-\sqrt{2}}{\left(\sqrt{3}\right)^{2}-\left(\sqrt{2}\right)^{2}}+\frac{\sqrt{4}-\sqrt{3}}{\left(\sqrt{4}\right)^{2}-\left(\sqrt{3}\right)^{2}}\)

= \(\frac{\sqrt{2}-1}{2-1}+\frac{\sqrt{3}-\sqrt{2}}{3-2}+\frac{\sqrt{4}-\sqrt{3}}{4-3}\)

= \(\sqrt{2}-1+\sqrt{3}-\sqrt{2}+\sqrt{4}-\sqrt{3}\)

= \(-1+2\)

= \(1\)


এই আর্টিকেলে মাধ্যমিক (দশম শ্রেণী) গণিতের নবম অধ্যায়, ‘দ্বিঘাত করণী’ -এর ‘কষে দেখি – 9.3’ বিভাগের সমস্ত সমস্যার সমাধান করা হয়েছে।

আশা করি, এই আর্টিকেলটি আপনাদের পরীক্ষার প্রস্তুতিতে কিছুটা হলেও সহায়ক হয়েছে। যদি কোনো প্রশ্ন, মতামত বা সাহায্যের প্রয়োজন হয়, নিচে কমেন্ট করে জানাতে পারেন অথবা টেলিগ্রামের মাধ্যমে যোগাযোগ করতে পারেন—আমরা আপনাদের সকল প্রশ্নের উত্তর দেওয়ার জন্য সর্বদা প্রস্তুত।

Please Share This Article

Related Posts

রাশিবিজ্ঞান-গড়, মধ্যমা, ওজাইভ, সংখ্যাগুরুমান-কষে দেখি 26.4-মাধ্যমিক গণিত

মাধ্যমিক গণিত – রাশিবিজ্ঞান: গড়, মধ্যমা, ওজাইভ, সংখ্যাগুরুমান – কষে দেখি 26.4

রাশিবিজ্ঞান-গড়, মধ্যমা, ওজাইভ, সংখ্যাগুরুমান-কষে দেখি 26.3-মাধ্যমিক গণিত

মাধ্যমিক গণিত – রাশিবিজ্ঞান: গড়, মধ্যমা, ওজাইভ, সংখ্যাগুরুমান – কষে দেখি 26.3

রাশিবিজ্ঞান-গড়, মধ্যমা, ওজাইভ, সংখ্যাগুরুমান - কষে দেখি 26.2-মাধ্যমিক গণিত

মাধ্যমিক গণিত – রাশিবিজ্ঞান: গড়, মধ্যমা, ওজাইভ, সংখ্যাগুরুমান – কষে দেখি 26.2

About The Author

Rahul

Tags

মন্তব্য করুন

SolutionWbbse

"SolutionWbbse" শিক্ষার্থীদের জন্য একটি অনলাইন অধ্যয়ন প্ল্যাটফর্ম। এখানে প্রতিযোগিতামূলক পরীক্ষার প্রস্তুতি, মাধ্যমিক পরীক্ষার জন্য গাইডলাইন, এবং বিভিন্ন বিষয়ে পড়াশোনার সাহায্য প্রদান করা হয়। আমাদের মূল লক্ষ্য হলো ইন্টারনেটের মাধ্যমে সকল বিষয়ের শিক্ষণীয় উপকরণ সহজেই সকল শিক্ষার্থীর কাছে পৌঁছে দেওয়া।

Editor Picks

মাধ্যমিক গণিত – রাশিবিজ্ঞান: গড়, মধ্যমা, ওজাইভ, সংখ্যাগুরুমান – কষে দেখি 26.4

মাধ্যমিক গণিত – রাশিবিজ্ঞান: গড়, মধ্যমা, ওজাইভ, সংখ্যাগুরুমান – কষে দেখি 26.3

মাধ্যমিক গণিত – রাশিবিজ্ঞান: গড়, মধ্যমা, ওজাইভ, সংখ্যাগুরুমান – কষে দেখি 26.2

মাধ্যমিক গণিত – রাশিবিজ্ঞান: গড়, মধ্যমা, ওজাইভ, সংখ্যাগুরুমান – কষে দেখি 26.1

মাধ্যমিক গণিত – রাশিবিজ্ঞান: গড়, মধ্যমা, ওজাইভ, সংখ্যাগুরুমান – প্রয়োগ